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Helmut Pulte (Ruhr
Universität Bochum-
RUB, Germany 
'Action' in Action. On the Rise, Development and 'Metaphysical
Unloading' of a Controversial Concept of Rational Mechanics.

'Action' was used in rational mechanics around 1700 in ambiguous,
often misleading ways. It became an important and controversial
concept in connection with the 'principle of least action' of Euler and
Maupertuis, which was also attributed (wrongly, in my opinion) to
Leibniz.
The lecture examines different uses and meanings of 'action' in the
18th century and goes on to trace its changing meaning until the end
of the 19th century. Using a catchword, one might speak of a
'metaphysical unloading' of the concept, the causes of which have
perhaps not been sufficiently recognised and analysed until today.



Robert DiSalle (University
of Western Ontario,
Canada)
Space-time and experience

Einstein’s special theory of relativity (1905) took on a remarkable new
aspect when Minkowski (1908) formulated it as a theory of space-
time. While this was unquestionably an essential innovation for the
future development of special relativity, and in particular for the
transition from special to general relativity (1916), it has also been
regarded as a particularly abstract formulation of the theory, remote
from the empirical motivations and applications that connected the
theory to the world of experience. This was reflected in Einstein’s
early response to Minkowski’s idea, and a recurring theme in
interpretations of special relativity up to our own time. By revisiting
Minkowski’s conception of space-time in its original context, and
comparison of it with other abstract reformulations of classical
physical theories, we can see how closely Minkowski’s formulation
remained to its empirical foundation, and perhaps appreciate some
important insights into the general problem of the empirical
interpretation of mathematical theories.



Olivier Darrigol (CNRS,
UMR SPHere, France)

Relativity principles before relativity theory

It is usually believed that the relativity principle had long been a basic
principle of mechanics when around 1900 Poincaré and Einstein
used it to frame a new electrodynamics of moving bodies and thus
reached what is now called relativity theory. This is not exactly the
case, because most physicists before Poincaré did not truly regard
the Galilean relativity of mechanical phenomena as a principle: it was
either an empirical law (for Galileo) or a theorem (for Newton and
most of his followers). Yet it is true that in the later seventeenth
century, Christiaan Huygens inaugurated a long tradition of deriving
physical laws through constructive relativity principles. Plural is
needed here, because since Newton there were two kinds of
relativity involved: a Galilean relativity introduced by Galileo, and an
accelerative relativity principle introduced by Newton and akin to
Einstein's later equivalence principle. 

I will show how relativity principles prospered in Euler's,
d'Alembert's, and Laplace's hands, and then became the basis for a
popular derivation of Newton's acceleration law in French physics
textbooks of the nineteenth century. It turns out that Poincaré and
Einstein were both aware of this tradition, that Poincaré borrowed
from it the name Principe du mouvement relatif (which he later
altered to Principe de relativité). In recognizing the architectonic role
of relativity principles, both of them were remote descendants of
Huygens.



Travis McKenna (University of
Pittsburgh)
What is an `instance' of Newton’s second law?

It is common within the contemporary metaphysical literature regarding
laws of nature for philosophers to grapple with questions about the
relationship between scientific laws and the systems to which they
applyby considering the way that schemata such as ‘All F s are Gs’ relate
to ‘instances’ like ‘a is F andais G.’ For example, in the introduction to a
recent paper dedicated almost entirely to discussing such
schemata,Emery [2019, 1535] writes:

“What is the relation between a law and its instances? What is the
relation,for instance, between Newton’s second law (f = ma) and those
sequences of events in which applying a force f to a mass m results in the
mass accelerating at a rate of a = f/m?”

In fact, Newton’s second law as originally articulated is true more or less
solely of point masses with no extension. When we talk in generic terms
of “applying force f to a mass m” as a clear cut ‘instance’ of Newton’s
second law we are brushing aside important mattersof detail.
ExtendingNewton’s laws to rigid and deformable bodies was an
important challenge in the history of classical mechanics. One of the
primary obstacle to this extension was the question of how to reconcile
the fact that many forces, such as friction, act on the surfacesof bodies
with the fact that point masses explicitlylack such surfaces.

Ultimately this challenge was overcome, in no small part thanks to
Leonhard Euler. The key point, however, is that this required extra
physical principles not in any sense ‘contained’ in Newton’s laws. These
extra principles allow us to understand generic situations in which we
“apply a force f to a mass m” loosely as ‘instances’ of Newton’s second
law. In doing so, however, we are recognising that when combined
with these extra principles, Newton’s second law supplies
centraldynamic equations that our ‘mass m’ will obey at some scale.

This paper will examine the details of how this extension was
accomplished and argue for the philosophical importance of those
details.The main upshothere is that understanding the conceptual and
physical innovations that allowed us to extend Newton’s second law to
treat rigid and deformable bodies requires attention to more subtle
details than ‘All F s are Gs’ schemata allow. AlthoughNewton’s second
law applies to a great variety of systems that are not modelled as point
masses, these systems are not ‘instances’ of the law in the narrow,
logicalsense around whichthe contemporary metaphysical debate is
framed.The morale: understanding the relationship between Newton’s
second law and the systems to which it applies requiresthat we do
more than reflect on the relationship between ‘All Fs are Gs’ and its
instances.



Sandro Caparrini (University of Torino, Italy)
Remarks on J. L. Lagrange’s Méchanique analitique

There is no shortage of books and papers citing J. L. Lagrange’s Méchanique
analitique (1788). Yet, though armed with a thorough knowledge of secondary
literature, the modern reader is likely to struggle with every page. Like many
classics, the Méchanique analitique is a labyrinthine microcosm.

The Méchanique analitique has a complex history of composition. Between 1756
and 1760 Lagrange wrote a few works that can be considered as intermediate
steps in the evolution of the final treatise. In addition, between 1760 and 1788 he
published several papers on mechanics. Most of them are extensive treatments
of fundamental topics like fluid dynamics, rigid bodies, perturbation theory and
vibrating systems. They have the same structure as the Méchanique: some
methodological remarks, a historical introduction and a section on general
principles, followed by pages upon pages of differential algebra. These works were
carried forth verbatim into the treatise.

About a quarter of a century after the publication of the Méchanique, Lagrange
produced a second edition (1811-15), taking into account the recent discoveries
of a younger generation of mathematicians. The many revisions and additions
nearly doubled the size of the book.

Clearly, this is a text of many layers. While some of these have been explored,
others remain to be identified. Prospective explorers should be prepared to go
through the text line by line and equation by equation. Their patience will be
rewarded.

Among the unexpected discoveries is the fact that Lagrange had a working knowledge of
the geometrical composition of directed line segments long before Grassmann and
Hamilton, in the 1840s, explained the general principles of vector calculus. In the section
of the Méchanique analitique on the kinematics of rigid bodies he worked out analytically
the elements for a geometrical theory of systems of three radii vectores. He obtained
formulae for what we now call the dot product, the cross product and the mixed product
of vectors. It must be noted that these results first appeared in papers published almost
twenty years earlier.

It is also worth noting that Lagrange had formulated the (so-called) Cauchy-Schwarz
inequality in the 1770s. This was a by-product of his work on geometrical vectors. In the
1820s Cauchy generalized this formula to n variables.

Concerning the principles of mechanics, Lagrange proved in general the conservation of
mechanical energy the principle of momentum, the principle of moment of momentum,
the principle of virtual work and the principle of least action. (Before Lagrange it was
generally acknowledged that these were theorems rather than axioms, but these
theorems had been demonstrated only in the context of specific theories, starting from
several different principles and using a variety of mathematical methods.) He also
explored the connection between spatial invariance and conservation laws. Moreover, he
demonstrated the important lemmas which state that the resultant and the resultant
torque of the internal forces of a system of mass points are both equal to zero.

The second edition, retitled Mécanique analytique, contains much that was then new.
Chief among the new insights is the recognition of the geometrical representation of
angular velocities (vectors) and momenta (plane surfaces). Lagrange also gave, probably
for the first time, a proof of the formal invariance of a given differential expression under
an orthogonal transformation of coordinates.



Tzuchien Tho (University of Bristol)
Lagrange’s “true metaphysics” and the foundations of analytical
mechanics 
 
Due to W.R. Hamilton, analytical mechanics is often historically
interpreted in a way that highlights its role in the evolution of the
least action Principle (or, more accurately stationary action) due to
the methods of optimisation. This characterisation is indeed true for
the historical developments of analytical mechanics before Lagrange
(Maupertuis, Euler, et. al.) and after Lagrange (Hamilton, et. al.) but
not true for the mature Lagrange who was very keen to distance his
work from teleology. Though there is not scholarly consensus, J.L.
Fraser (1983) has made a convincing claim that this rejection of his
teleologically inclined elder colleagues was at the basis of his claim of
having developed “the true metaphysics of their [mechanics]
principles” [la vraye metaphisique de leurs principes]. Yet since
Lagrange was typically laconic about “metaphysics”, we do not have a
clear expression of what this might concretely be. 

This paper focuses on the method of virtual velocities which
Lagrange used to replace the least action methods of his
predecessors and examine the metaphysics that it could imply. In
particular, focus is placed on the causal theory implied by Lagrange’s
methods and shows how this challenges not only teleological
understandings but also the Newtonian mechanical one. 

The paper begins by contextualising Lagrange’s method of
virtual velocities within the periods of his writing focusing on
his 1764 work on the Moon’s libration. We then move to
contextualising these methods within the foundations of
analytical mechanics, identifying the theoretical development
of virtual velocity and virtual work methods that had come
before. By doing this, we develop a sketch of the metaphysical
assumptions of the method and use this to assess the deep
differences between Lagrange’s innovations and the standard
understanding of the least (stationary) action principle. We
finally make a case for a Lagrangian theory of causation that is
local but not mechanical in the usual sense, and structural but
not teleological as his near predecessors would have it. The
reexamination of the foundations of analytical mechanics will
have significant concepts to offer contemporary philosophy of
physics. 



María de Paz (Universidad de Sevilla)
Feigning Hypotheses: Non Newtonian Approaches to Gravitation

It is well known that one of the obscurities in Newton’s natural
philosophy is the way gravitation is transmitted. Although Newton
claimed to not feign hypotheses to explain this issue, this did not
prevent some of his successors from doing it. The aim of this talk is
to explore two particular approaches to gravitation in the 18th
century: that of the famous mathematician Leonhard Euler and that
of a forgotten figure, Georges Louis Le Sage. Both natural
philosophers were well aware of Newton’s work in this topic and
both were against an action-at-a distance approach. However, their
solutions, although they could be regarded as action-in-contact
approaches, are quite different in several respects. The metaphysical
foundations in which they are based, the physical consequences, the
mathematical approach and the methodology they developed are
some of the topics we will present. By discussing approaches that
today are no longer considered, we aim to show that the
development of classical mechanics in the Eighteenth Century is far
from that of a period of ‘normal’ science. Several authors were in fact
discussing the foundations of science in metaphysical, physical,
mathematical and methodological respects, although they all took
into account Newton’s work. By providing alternative approaches to
natural philosophy they all contributed to develop concepts in order
to handle problems and understand the way nature works.



Daniel Nieto (Universidad de Sevilla)
On methodology: Émilie du Châtelet between gravitation and vis
viva.

Although the eighteenth century has been considered a period in
which Newtonianism reigned -something that is not entirely
accurate-, the question of scientific method is still pertinent. If we
analyse the scientific situation at the time, we will find that the
Cartesians used too many hypotheses and the Newtonians none or
few. However, not every natural philosopher fits in these two labels.
Among the ones who do not, we find Émilie du Châtelet, a
philosopher and scientist who, in her Institutions de Physique, shows
us a new method of scientific practice. 

Châtelet uses a combined methodology. In her method, we find the
first principles of knowledge introduced by Leibniz, i.e. the principle
of sufficient reason and the principle of non-contradiction, the
principle of continuity and the principle of the identity of
indiscernibles. Using the first principles as a fundamental part of his
methodology, Châtelet concludes that hypotheses are useful, as they
can guide our thinking towards the truth. In this sense, she rejects
both the idea that hypotheses only create fictions, as Newtonians
would say, and the idea that hypotheses do not lead to any safe
path. 

In my talk, I want to show the way by which Châtelet arrives to
the use of hypothesis through the first principles. I will also
show how these principles are needed to create safe hypothesis
which guide our thinking to the truth. Furthermore, the
principles are also needed to avoid obstacles when we want to
create a good hypothesis, so they help us to distinguish a good
hypothesis from a bad one. 

In order to frame my ideas, I will show how these hypotheses
work when she had to choose between the Newtonian theory of
gravitation or Leibnizian theory of vis viva. Through the analysis
of Châtelet’s work regarding hypotheses and motion, I will show
that hypotheses are an integral part of the ‘making of’ science,
and not a mere residual device that remains outside the
theoretical prediction of phenomena. 






Michael Veldman (Duke University)
Kuhn’s “Newtonian Paradigm”and the Impenetrability of 18th Century Physics
Michael Veldman

Kuhn argued that scientific inquiry becomes a fruitful program of “normal science”
when collective acceptancecauses a “paradigm”to coalesce out of a field of
controversy. In Kuhn’s work, Newtonian physics is somethinglike the paradigmatic
paradigm, used to map out a canonical structurefor the evolution of science.
ContraKuhn, in 18th century physics, there was no such thingas the ‘Newtonian
paradigm’. One reason is that the concept of force – central to Newtonianphysics –
remainedcontroversial throughout the 18th century.Nonetheless, in the
Introduction to Structure, Kuhn claimed that:

“Effective research scarcely begins before a scientific communitythinks it has
acquired firm answers to questions like the following: What are the fundamental
entities of which the universe is composed? How do these interact with each other
and with the senses? What questions maylegitimately be asked about such
entities…?”

The idea of a Newtonianparadigm has proven to be a compellinglens for
philosophers interested in the history of physics. But if we take off those glasses for
a moment, we will see that none of these questions had consensusanswers in the
18th century,and that Euler, Maupertuis, d’Alembertand others were working out
their own foundations for what would only later become ‘classical mechanics’.
 Strikingly, Kuhn claimed in Structure that 18th century mechanics can be reduced
to mere “applications” and “reformulations” of the Principia. A decade later, Kuhn
distinguished two senses of ‘paradigm’: a ‘local’ concept, the shared example of
successful practice, and a ‘global’ concept, also called the ‘disciplinary matrix’,which
encompasses paradigms-as-examples, as well as symbolic generalizations
(roughly,equations expressing laws) and “models”.

We can use each of these proposed understandings of ‘paradigm’ to evaluate
Kuhn’s claims about 18th century mechanics. First, Newton’s mathematical
methods were quickly supplanted, so he did not provide paradigms-as-examples.
Second, this lack of exemplarsstimulated a search for new fundamental principles,
so Newton did not provide a complete set of symbolic generalizations.

Finally, I turn to the aspect of “models” which Kuhn says amounts to an ontology, a
collection of concepts expressing a view of “what the world is like.” The central
conceptswere force and mass. Pace Kuhn, the question of the natureof forces was
up for grabs for most of the 18th century. One aspectof the surrounding
controversy traces back to Newton’s own deployment of the concept of ‘force of
inertia’, which puzzlinglycategorizes the cause of the persistence of a body in its
state of motion as a ‘force,’alongside pushes and pulls.Euler, for example,criticized
this and other perceivedissues in Newton’s conception of matter, and attempted to
resolve them by means of a fundamental theory of the nature of forces and bodies
that relied crucially on corporeal impenetrability. The upshot is that on none of the
candidate understandings of paradigm can 18th century mechanics be simply
subsumed under a Newtonianparadigm, which should prompt a reconsideration
of the accuracyand usefulness of Kuhn’s conceptual framework. In my view, the
upshot is not simply that Kuhn was wrong. While the notion of a ‘paradigm’ is
unhelpful here, it providesus a way into the 18th centuryby throwing into relief the
conceptual disputes over forces, body, and physical principles that persisted
throughout its whole duration.This continuing debate over force, body, and bodily
action formed the background for much-studied late-century philosophy, such as
Kant’s attemptto place mechanics on ‘metaphysical foundations.’ And arguably, it
was exactly this conceptual ferment that yieldedcomprehensive alternative
approaches to mechanical theory, delimiting the concepts and physical
applications so as to make it possible, at the end of the 18th century, to first define
a “Newtonian paradigm” for classical mechanics.






Adán Sus (Universidad de Valladolid)
Dynamical symmetries, physical possibilities and the emergence
of Galilean/Newtonian spacetime

The notions of symmetry and physical equivalence are with no doubt
related. Nonetheless, careful attention shows that the relation is not
without problems. The temptation of identifying, in spacetime
theories, states of affairs that are related by a symmetry
transformation should be contained, first, by noting that there is not
a unique notion of physical symmetry and, second, by realizing that
in some situations states connected by a symmetrytransformation
are countedas distinct physicalpossibilities.

In this talk I will address the problem of how to provide an account of
the relation between symmetry and physicalequivalence, which goes
through the question of how to characterize the notion of physical
symmetry. To this effect, I will revise different strategies for providing
such a characterization and discuss whether they fulfill reasonable
desiderata associated to the notion of physical symmetry. Then, I will
confront them to the idea of introducing the notion of physically
relevant symmetrical backgrounds in order to define physical
symmetries. I will argue that the physical relevance of such
structures is gained by their connection to the dynamics of isolated
subsystems and the possibility of defining proper conserved
quantities.



This discussion has a particular impact on the old question about
what the right spacetime setting for Newtonian physics is, on the
one hand, and about the allegedly different status of inertial
structures in Newtonian and relativistic physics. Building on work
by Saunders, Knox and Wallace, I will explore the possibility of
understanding the spatio-temporal structures in Newtonian
physics as emerging from certain features of the dynamics of
subsystems.

Referring to symmetrical backgrounds in the interpretation of
spacetime theories can be reminiscent of a substantivalist or
geometric approach. Nonetheless, I will argue that this does not
have to be the case by discussing the prospects of
accommodating this characterization of physical symmetries to a
dynamical approach to spacetime theories that also integrates
elements belonging to the neo-Kantian trascendental tradition.






Javier Anta (Universidad de Barcelona / LOGOS)
A Historical-Cognitive Approach toward the Concept of Phase Space

The concept of phase space is one of the most powerful epistemic tools in
classical mechanics (CM) since it allows us to describe mechanical behaviors
via the geometry of the space of possible position and momentum values. In
this talk I argue from a historical-cognitive perspective that the intellectual
genesis of the CM concept of 'phase space' constituted not a homogeneous-
linear episode but an entangled historical process grounded on the
development of visual-representation practices in classical mechanics.

Although the historiography of physics often cites Liouville's 1838 famous
paper as the origin of this concept (e.g., Nolte 2018), the truth is that it was
precisely Jacobi in his 1843-1844 “Vorlesungen über Dynamik” lectures
(Clebsch 1866) who first applied Liouville's results to Hamiltonian mechanics
by presupposing the conservation of a certain property defined over
collections of solutions of differential equations. Although Jacobi stated that
Liouville's theorem implied a certain conservation, he made no explicit
reference to any ‘space’, ‘trajectory’ or ‘conserved volume’. This Jacobian
analytical treatment of mechanical systems relied on symbolic reasoning about
classes of solutions of Hamiltonians, which precluded conceiving or imagining
the existence of an abstract spatial framework. Jacobi's results in the 1840s
were pivotal in Boltzmann's first paper in 1871, but it was precisely in his
second paper of 1871 wherein he used graphical resources (the now called
'Lissajous figures') to describe the dynamics of mechanical systems in a two-
dimensional space. In Boltzmann’s celebrated 1872 paper he originally
referred to the point representing the mechanical state of a molecular system
as a ‘phase point’.

I argue that the possibility of cognitively assimilating the notion of phase space
depends on having, on the one hand, an intellectual context prone to abstract
spaces (as fostered by Klein's Erlangen program in 1872 and by the vast
proliferation of non-Euclidean geometries since the 1850s); and on the other hand,
on having certain key visual representation practices in mathematical physics. As far
as visualization practices are concerned, it is worth mentioning Poincaré's
development in 1889-1890 of a graphical representation technique where a plane
embedded in the space of possible position-momentum values is used to assess
the dynamic behavior of possible solutions. Note that the use of this 'first-return
map' presupposes a proficient (though still implicit) cognitive exploitation of the
concept of phase space by Poincaré. Other visualization techniques correspond to
those displayed by Gibbs in his classical Elementary Principles in Statistical
Mechanics in 1902, wherein he employed the Grassmannian term 'extension' (but
not ‘space’ or ‘volume’) to refer to the property which is conserved via Liouville's
theorem. These Gibbsian tools allowed to conceive (and also visualize) the evolution
of a set of Hamiltonian trajectories of a mechanical system as an incompressible
liquid flowing in the position-momentum space.

The central idea is that the development of mathematical visualization practices
during 1872-1902 such as Boltzmann's Lissajous figures, the Poincaré Section or
the Gibbs diagrams enabled to cognitively generate vague image schemas (e.g.,
Lakoff & Nuñez 2000), then accurately conceive and finally technically define a
phase space like the one implicitly formulated by Jacobi as soon as in 1843-1844.
Finally, in this last period of conceptual consolidation (1902-1918) intervened
authors such as Paul and Tatiana Ehrenfest, who defined rigorously for the first time
the CM-notion of 'G-space' or 'Phasenraum' in 1911; or Rosenthal and Plancheral,
who for the first time explicitly employed the English expression 'phase space' in
1913. The rest is history.



Laurent Goffart (CNRS)
Are kinematic parameters encoded within the brain activity while a gaze
movement is being achieved toward a visual target?

Two types of eye movement are made while one tracks a target moving in the
visual field. The first type is an abrupt step-like movement (called saccade) that
rapidly rotates the eyes toward the target location and brings its image within the
central visual field. The second type is a slower movement (called pursuit) whose
velocity approximates that of the target. From the retinal excitation to the
contraction of extraocular muscle fibers, distinct and parallel visuomotor
channels are involved in generating these two movements. Most of the time, the
eyes do not rotate as fast as the target; the target image slips on the retina and
catch-up saccades punctuate the oculomotor tracking. The performance during
which gaze moves continuously and as fast as the target is not spontaneous but
requires training. 

During the last six decades, numerous studies investigated the neuronal
processes driving the changes in the orientation of the eyes in response to a
moving target. High-resolution recording techniques yielded time series of
numerical values from which magnitudes such as eye movement amplitude,
duration and velocity were calculated. Some models proposed the existence in
the brain of processes that would reduce the difference between internal signals
encoding gaze and target directions (for guiding the saccade) and the difference
between signals encoding the eye rotation speed and the target speed (for
accelerating the slow pursuit component). Lastly, during the pursuit
maintenance, a process would sustain the eye velocity while the target image is
more or less stabilized in the central visual field. This cybernetic formalism
guided electrophysiologists who studied the correlations between the activity of
neurons and various kinematic parameters of the eyes and target (position,
distance, amplitude, velocity and even acceleration). A one-to-one
correspondence was often assumed between notions belonging to the physical
world and the inner functioning of the brain.

However, contrary to the receptacle (space) within which the object is moving, the
brain medium is not empty, neutral, homogeneous, isotropic or uniform. The
neurophysiology unravels clusters of various kinds of cells between which
multiple channels transmit the retinal signals with unequal conduction speeds.
Before converging onto the motor nerves and exciting the appropriate muscle
fibers, the visuomotor transmission consists of flows of activity that are
distributed across several neuronal regions. Within these neuronal networks, the
neural image of a small target spot does not look compact and rigid but dynamic
and expanded, spatially and temporally. Yet, despite this tremendous complexity,
animals exhibit the ability to capture an object, at the location where it is and at
the time when it is there. 

During my communication, I shall report examples illustrating attempts to
“cerebralize” kinematic parameters and explain their limitations. Instead of
embedding within the cerebral medium, notions that are classically used to
describe the motion of a rigid body in the external world, an alternative option
remains possible. A saccade can be viewed as the outcome of a process that
restores an equilibrium between visuomotor channels exerting mutually opposing
tendencies whereas the slow eye movement as a sustained imbalance.






Marij van Strien (Bergische Universität Wuppertal)
Overcoming Newton in the Twentieth Century: The Development and
Rhetorical Uses of the Concept of Classical Mechanics

During the 1920s and 1930s, many authors, physicists as well as non-
physicists, argued that the framework of classical physics had turned out
to be too narrow and restrictive. They argued that central elements of
classical physics were refuted in the recent developments in physics, in
particular relativity theory and quantum physics. This was frequently seen
as bringing an end to the strict mechanism and determinism of the
physics of the nineteenth century, and even as a liberation from an
oppressive worldview.

As Richard Staley (2005) has shown, the terms ‘classical mechanics’ and
‘classical physics’ itself date from the early twentieth century. This means
that the physics of the eighteenth and nineteenth century only became
classical in retrospect, when contrasted with the ‘modern’ physics of the
early twentieth century;Staley therefore speaks of the ‘co-creation’ of
classical and modern physics.

Whereas Staley has traced the earliest uses of the terms ‘classical
mechanics’ and ‘classical physics’, in particular in the context of Einstein’s
special relativity theory in 1905 and at the Solvay conference on quantum
physics in 1911, Gooday and Mitchell (2013) have argued that it took
somewhat longer before the term ‘classical physics’ really became
established as a general term for non-relativistic, non-quantum physics,
until the 1920s–1930s.

This means that the period in which the term ‘classical physics’ became
established was at the same time a period in which it was widely argued
that classical physics had now (finally) been overcome. This raises the
question in how far the image of classical physics which was formed in
this period is accurate. Both the terms ‘classical mechanics’ and ‘classical
physics’ may from the beginning have referred to a distorted image of
the mechanics and physics of the eighteenth and nineteenth century: in
particular, the physics of this period may have seemed more
mechanistic, deterministic and uniformin retrospect than it actually was.

This talk aims to show how the image of classical mechanics developed
during the 1920s and 1930s. I will look in particular at the rhetorical use
of the terms ‘classical’ and ‘Newtonian’. The term ‘classical mechanics’
accomplishes a few things: it signifies the enduring relevance of past
science, while at the same time signifying that this is indeed past science,
and that a revolution has since taken place (Clarke 2014). Furthermore, it
suggests a unified framework, and thereby tends to create a
homogenized, unified image of the past: I suggest that it is partly through
this term that we conceive of the eighteenth and nineteenth century as a
stable period in mechanics, in which Newton’s laws provided a fixed
framework, rather than as an active and developing field of research in
which there were a diversity of approaches.



Amaia Corral-Villate (Universidad del País Vasco)

On particle disappearance conclusions in classical mechanical
configurations

The context of this talk is provided by the particle disappearance
results concluded in recent discussions on three infinite particle
configurations in strict classical mechanical settings; namely, those
by Alper & Bridger (2002), Pérez Laraudogoitia (1998) and Shackel
(2018). In fact, even if these configurations provide a good context in
which to clarify the basis operating in each setting and to contrast
the corresponding evolutions, the analysis that follows may also be
applied to the infinity machine introduced by Black (1951) in which
only one particle is in place, despite the fact that the author did not
claimany disappearance resultin this case.

The objective of the talk is therefore to clarify the basis on which
particle disappearance results may justifiably be claimed, and
consequently determinewhether those particular configurations fulfil
the required characteristics. The key to identify these conditions and
the consequently justified disappearance result is shown by Corral-
Villate (2020) to be given by the application of the fundamental
classical mechanical principle of mass conservation in the
formulation by Earman (1986), and the classical mechanical
requirement that world lines be continuous.

The result of this analysis leads to conclude that given that both the
discussions by Alper & Bridger (2002) and Shackel (2018) imply the
violation of the fundamental principle of mass conservation, in
neither of these configurations is the particle disappearance claim
justified. Contrarily, in the systems by Pérez Laraudogoitia (1998)
and Black (1951) the fundamental principle of mass conservation is
fulfilled, and thus the particle extinction conclusion is in these cases
justifiable. Furthermore, the world line continuity condition seems in
fact to require such disappearance.



Aldo Filomeno (Instituto de Filosofía, Universidad Católica de Valparaíso) 
Non-causal explanation of lawful behavior from
mathematical constraints

In this talk I would like to assess whetherand how mathematical facts
can constrain the space of what is physically (or ‘naturally’) possible.
The idea, well-known but puzzling, is that logical or mathematical
necessity constrains the physical world by constraining the space of
physical possi- bilities.

It is usually considered that physical possibilities are a proper subset
of logical space, but the source of physical modality is usually thought
to be different, sui generis. Still, empiricists have considered such
notion of physical modality elusive and mysterious (and it could be
said that today it remains a mystery). Now, in the history of physics
(notablyin the history of mechanicssince the XVI century to this day)
we find (disputed) attemptsto maintain that physical necessityjust is
mathematical necessity, which (arguably) would solve the mystery. 
 Along this line, today inthe philosophy of science, the current
primitivist account of laws seems to expect some sort of
“mathematical inevitability” of the final laws of a theory of everything,
especially when stated by physicists (cf. Maudlin 2ooy).

How to make sense of such a thesis, viz. that physical necessity just is
mathematical necessity? This task has turned out hard to spell out,
and has even been ignored in the literature in philosophy of science
and metaphysics. However, in this talk I argue that there are two
places in which we might find support for this thesis on the source of
physical necessity, i.e. of the laws of nature. On the one hand, in the
disputed attempts in the history of mechanics, from Euler or
D’Alembert, to current improvements, such as those studied and
proposed in (Darrigol, 2o14, 2ooy). On the other hand, in the recent
literature of non-causal explanations of physical phenomena.

Regarding the former,in the setting of classicalmechanics, we
have available a large varietyof attempts to derive the mechanical
laws of motion from the fewest and allegedly most plausible
principles (which e.g. often are the principleof sufficient reason
or the principle of inertia). Althoughthey have been disputed for
good reasons, all these foundational attempts already hint at the
thesis of the necessity of classical mechanics. The recent attempt
by Darrigol (2o14, 2ooy), if successful, would constitute a further
milestone in this project.

The latter, the alleged distinctively non-causal explanations of
physical phenomena, might inde- pendently contributeto ground
the plausibility of such project.I cite a variety of examples found
in this literature: the double pendulum, Ko¨ninsberg bridges,
Lorentz invariance, and renormaliza- tion group techniques
(Batterman, 2oo1, 2o18; Morrison, 2o1y; Lange, 2o1y; ?) If the
explanation of such physicalphenomena is distinctively
mathematical, this would highlight the modal influenceof
mathematics in the material world. No possible world can violate
mathematical truths. As it is sometimes said, even God could not
make 2+2 be differentfrom 4. If there really are distinctively
mathematical explanations of physical phenomena, in which the
underlying causal network is ir- relevant and need not exist, as
Marc Lange argues (Lange, 2o1y), this could help us to
understand how certain physical events cannot occur, thus
constraining what is physically possible, and thus delimiting a
state space.

 This is of course insufficient to resolve the issue.
But it is one step to supporta currently
neglectedaccount of laws of nature: an account in
which laws get their modal strength from
mathematical modality. Thus, in this talk I consider
that, between pure contingency and mathematical
necessity, there is nothing – there is no primitive
physical modality.

In addition to this first step, one could pursue
different paths; this way of understanding physical
modality can be complemented in different ways.
One way is to complement it with the statistical
explanations (a la 2nd law of thermodynamics) of
emergent patterns(see e.g. (Filomeno, 2o19, 2o21)
and references therein), which are also non-
causal. Then, in the resulting view, the only law-
like as- sumptions are the general constraints that
are usually imposed in the study of physical
systems; for instance, the boundary conditions or
the kinematical conditions. Cf. (Adlam 2o22; Chen
and Gold- stein 2o22; Romero). How to
ontologically understand such constraints was one
of the challenges to solve. Perhaps the
aforementioned non-causal explanations of
physical patterns by mathematical constraints
might fill this role.



Joshua Ben Itamar 
Berkely's criterion of a mechanist view and his attack on the
mechanist view

The article will review the common criteria of a  mechanist view in the 17th
century and the beginning of the 18 th century.

An attempt will be made to present the criterion that Berkeley adopted, as
well as his uniqe attack on the mechanist view
According to the criterion of a mechanist view as impliedfrom berkeley's
writings, a mechanist view is one that explains the natural   phenomena,
assuming material causes only.

Berkeley claims that the material world as perceived by us is a collection
of sensual ideas. These ideas exist in our mind , and cannot exist out of
our mind. Berkeley also claims that the ideas are passive. An idea is
merely a sign for another idea, and not the cause of the formation of
another idea. Since Berkeley attacks the mechanist view, he is defined as
an anti mechanist.

Berkeley claims that the term "Force", which many physicists think that it
represents a cause of phenomena as velocity changes, dose not represent
a real quality. Berkeley is defined as an empiricist. But in order to preserve
scientific achievements and the ability to connect between phenomena
and to predict, he claims that we have to use the term "Force" although it
dose not represent any real idea or a real quality. The term "Force"
represents in his opinion a mathematical fiction that enables us to
connect between phenomena and to predict. This view of Berkeley is
called " Scientific Instrumentalism". 

Science does not deal with material causes according to Berkeley's view. The
universal mind (God) is the real cause of natural phenomena, "planting" the
regular ideas referred to as '' nature''. Still minds and God should be dealt
with in metaphysics. Therefore Berkeley's attack on the mechanist view is
the result of his view that only in metaphysics we deal with real causes, and
these causes are spiritual.

In Berkeley's opinion, there is no difference between the picture of the
world which follows from his philosophy, and the common sense picture ,
the one that the ''man in the street'' holds. Moreover, Berkeley claims that
no scientific achievement suffers as a result of his philosophy. 
Berkeley is unique when compared to most of the mechanists, since he
claims that a scientificexplanation does not support material causes, and
the term ''Force'' in his opinion represents a mathematical fiction.

Although Berkeley executes a full mathematization of the term "Force", he
does not adopt mathematization as the criterion of mechanist views.

As far as his scientific instrumentalism is concerned, Berkeley preceded
Ernst Mach about 200 years. The instrumentalist view became more
acceptable when Quantum theory was developed. This view may be seen as
a step towards the full mathematization of physics, such as was done in
Quantum mechanics. 



Shaul Katzir (The Cohn Institute for history and philosophy of Science and ideas, Tel Aviv University)

The use of the Principle of Vis Viva before Helmholtz 

In his recent comprehensive and thorough Helmholtz and the
Conservation of Energy, Kenneth Caneva has claimed that the
principle of (conservation of) vis viva had been evoked only to a
system returning to an earlier state, or to one without Newtonian
forces. In this talk I intend to argue that this was not the case, and
that the principle had been used also to analyse systems of material
bodies under central forces that do not return to their initial state. In
other works, it was used also when the vis viva proper (mv2) was not
conserved but the sum  was constant (as defined for example by
Lagrange). I shall rely on texts in the tradition of the French Analytical
Mechanics form Lagrange to Coriolis. Among others, the discussion
would show that contra to Caneva’s claim, mechanics was connected
to fields of “physics” (e.g. in Ampère’s work on electrodynamics), and
that the principle of vis viva (with or without the word “conservation”)
and the analytical tradition contributed to the emergence of the
principle of conservation of energy. In a more abstract level it would
show that a common term, like energy, is not always needed for
employing its conservation, as the lack of a common word for the vis
viva and our potential (quantité d'action of Navier) did not prevent
the employment of the law of vis viva.



Francesco Nappo (Politecnico di Milano)  
How Maxwell Discovered the Maxwell Equations

The popular story – the one still taught in many university-level physics courses
- about how J. C. Maxwell arrived at the Maxwell equations goes roughly as
follows. Having collected the main experimental laws of the electromagnetic
science of his time (namely Gauss’ law for electricity, Gauss’ law for magnetism,
Faraday’s law for electrical induction, and Ampère’s law for electromagnetism)
Maxwell noticed that they jointly violated the principle of conservation of
charge. Because of this, and possibly motivated by considerations of
symmetry, he integrated Ampère’s law with an additional term: the
‘displacement current’, understood as a rate of change of an electric field over
time. By means of this bold postulation, which experiments by Hertz and
others surprisingly confirmed, the path was open to the electromagnetic
theory of light.

A different, and more ‘scholarly’ version of this story – one that many
authoritative historians of science have embraced (see, e.g., Siegel 1991;
Achinstein 1991; Harman 1998; Hon and Goldstein 2020) – attributes a central
role to the mechanical model of molecular vortices in Maxwell’s paper “On
Physical Lines of Force” (1861-2). On this view, Maxwell supposed that
electromagnetic forces are described at the micro-physical level by a system of
quickly rotating vortices, the basis of magnetic action, which are kept in motion
by intervening “idle wheels”, representing electric forces. The “displacement
current” was then Maxwell’s additional posit to give physical coherence to his
mechanical hypothesis, while also allowing for an explanation of the
phenomena of electrostatics. The fact that the mechanical hypothesis was
consistent with all known observation was allegedly taken by Maxwell as
“evidence of the hypothetico-deductive character” (Siegel 1991:169) in support
of the modified (Ampère-Maxwell) electromagnetic law.

Neither of these stories takes seriously the distinctiveness of Maxwell’s approach
to physical inquiry. In this talk, I will defend the controversial view that the
introduction of the displacement current and the subsequent reduction of light
to electromagnetism was the result of Maxwell’s ingenious application of
concepts of mechanics in accordance with the “method of physical analogy” that
he had introduced in the early electromagnetic article “On Faraday’s Lines of
Force” (1855-56). On this account, the mechanical model of molecular vortices is
understood as merely a metaphor to (rather than a hypothesis about the nature
of) electromagnetic forces; this metaphorical (or analogical) character is precisely
what allows for the crucial conceptual innovation in Maxwell’s definition of the
displacement current (including his taking both the divergence-free and the curl-
free component of the electric field E in its formulation). My reconstruction of
how Maxwell arrived at the Maxwell equations illustrates the role of notions in
mechanics to the formulation of the electromagnetic equations, at the same
time calling for a reevaluation of the originality of Maxwell’s cognitive approach
to physical inquiry. 






Alberto T. Pérez (Universidad de Sevilla)
Einstein 1905 versus Poincaré 1906: a comparative study of two
of the founding articles of the special theory of relativity

It is normally considered that the foundational article of the special
theory of relativity is the one published by Einstein in June 1905 in
the German scientific journal "Annalen der Physik" entitled "On the
electrodynamics of moving bodies". But Einstein's article appears in
a context in which various physicists are seeking a solution to the
problems posed by electromagnetic theory and its apparent
incompatibilities with Newtonian mechanics. Two stand out
amongthem: Hendrik Anton Lorentz and Henri Poincaré. Lorentz was
one of the leading figures in theoretical physics at the turn of the
century and had developed what was then known as the theory of
the electron. Lorentz's theory reconciled Maxwell's field ideas with
the already evident existence of charged particles, in particular the
electron, formulating a conceptual synthesis that has survived
essentially intact to this day. The incompatibilities of Lorentz's theory
with classical mechanics were addressed by him in a series of articles
that culminated in the publication in 1904 of one entitled
"Electromagnetic phenomena in a system moving with any velocity
less than that of light".

The French mathematician and physicist Henri Poincaré published
his results on Lorentz's theory in 1906 in the Italian magazine
"Rendiconti del Circolo Matematico di Palermo". The work was
entitled 'On the dynamics of the electron'. Although published in
1906, this article was written by Poincaré in July 1905, almost
simultaneously with Einstein's, and a summary of it was presented
by the French mathematician himself at the Paris Academy of
Sciences that same year.

The Einstein and Poincaré papers are strikingly similar in
content.Both scientists pose thesame hypotheses, deduce from
them the same consequences, and arrive at the same mathematical
expressions for several of the questions raised. If there are
differences between the two, they are more of a conceptual nature,
in the physical interpretations that each one makes of the results
obtained. These differences in interpretation are especially relevant
in thecase of times and lengthsas measured by observers in relative
motion.

In this presentation, a comparative study of the articles by Einstein
and Poincaré is carried out, emphasizing the similarities and
differences in interpretation regarding the fundamental mechanical
concepts.



Alessio Rocci (Applied Physics research group and Theoretische Natuurkunde, VUB; International
Solvay Institutes )

Merging chemical mechanics with thermodynamics: From the
work of Clausius and Gibbs to De Donder’s affinity

According to Clifford Truesdell, Thermodynamics deserves a place
among the main disciplines of mechanics. He also noticed that
around the end of the age of classical mechanics, after the classical
works of Sadi Carnot and Rudolf Clausius, “Duhem […] made notable
but only partly successful efforts to unite mechanics and
thermodynamics”. Indeed, following Josiah Willard Gibbs, in his Traité
d’énergétique, Pierre Duhem tried to introduce the “mécanique
chimique”, i.e. chemical kinetics, and the dissipative systems
represented by chemical reactions by extending the concepts of non-
holonomic systems and the theory of potentials. Starting from
Gibbs’s and Duhem’s work, the Belgian mathematician Théophile De
Donder investigated the irreversible processes with the methods of
mathematical physics and provided a precise mathematical form for
chemical affinity. De Donder invented also the extent of reaction,
introducing the time variable and realizing Duhem’s attempt to unite
mechanics and thermodynamics creating a sort of mathematical
chemistry based on classical mechanics. Our talk focuses on the
concept of affinity and its formalization obtained by De Donder. 

His work stimulated a conceptual change creating an overlap
between physics, chemistry and mathematics, which would
produce a sort of revolution for thermodynamics because it started
to address new important characteristics that are fundamental
during chemical processes. Although De Donder’s work does not
properly belong to the age of classical mechanics, it highlights the
interdisciplinary relationship between the concepts of classical
mechanics, mathematical physics and thermodynamics. De
Donder’s efforts as a teacher at the University of Brussels and his
passion as a mentor for his collaborators were two fundamental
pillars for the creation of the so-called Brussels school of
thermodynamics. Our work is part of the Solvay Science Project, a
joint project involving the Vrije Universiteit Brussel (VUB), the
Université Libre de Bruxelles (ULB) and the International Solvay
Institutes, that aims both to investigate the history of the Solvay
Institutes and the history of physics and chemistry through the lens
of the Solvay Archives conserved at the ULB.


